170 research outputs found

    Sagittal Subtalar and Talocrural Joint Assessment During Ambulation With Controlled Ankle Movement (CAM) Boots

    Get PDF
    Background: The purpose of the current study was to determine sagittal plane talocrural and subtalar kinematic differences between barefoot and controlled ankle movement (CAM) boot walking. This study used fluoroscopic images to determine talar motion relative to tibia and calcaneal motion relative to talus. Methods: Fourteen male subjects (mean age 24.1 ± 3.5 years) screened for normal gait were tested. A fluoroscopy unit was used to collect images at 200 Hz during stance. Sagittal motion of the talocrural and subtalar joints were analyzed barefoot and within short and tall CAM boots. Results: Barefoot talocrural mean maximum plantar and dorsiflexion were 9.2 ± 5.4 degrees and −7.5 ± 7.4 degrees, respectively; short CAM boot mean maximum plantar and dorsiflexion were 3.2 ± 4.0 degrees and −4.8 ± 10.2 degrees, respectively; and tall CAM boot mean maximum plantar and dorsiflexion were −0.2 ± 3.5 degrees and −2.4 ± 5.1 degrees, respectively. Talocrural mean range of motion (ROM) decreased from barefoot (16.7 ± 5.1 degrees) to short CAM boot (8.0 ± 4.9 degrees) to tall CAM boot (2.2 ± 2.5 degrees). Subtalar mean maximum plantarflexion angles were 5.3 ± 5.6 degrees for barefoot walking, 4.1 ± 5.9 degrees for short CAM boot walking, and 3.0 ± 4.7 degrees for tall CAM boot walking. Mean minimum subtalar plantarflexion angles were 0.7 ± 3.2 degrees for barefoot walking, 0.7 ± 2.9 degrees for short CAM boot walking, and 0.1 ± 4.8 degrees for tall CAM boot walking. Subtalar mean ROM decreased from barefoot (4.6 ± 3.9 degrees) to short CAM boot (3.4 ± 3.8 degrees) to tall CAM boot (2.9 ± 2.6 degrees). Conclusion: Tall and short CAM boot intervention was shown to limit both talocrural and subtalar motion in the sagittal plane during ambulation. The greatest reductions were seen with the tall CAM boot, which limited talocrural motion by 86.8% and subtalar motion by 37.0% compared to barefoot. Short CAM boot intervention reduced talocrural motion by 52.1% and subtalar motion by 26.1% compared to barefoot. Clinical Relevance: Both short and tall CAM boots reduced talocrural and subtalar motion during gait. The short CAM boot was more convenient to use, whereas the tall CAM boot more effectively reduced motion. In treatments requiring greater immobilization of the talocrural and subtalar joints, the tall CAM boot should be considered

    Segmental Kinematic Analysis of Planovalgus Feet during Walking in Children with Cerebral Palsy

    Get PDF
    Pes planovalgus (flatfoot) is a common deformity among children with cerebral palsy. The Milwaukee Foot Model (MFM), a multi-segmental kinematic foot model, which uses radiography to align the underlying bony anatomy with reflective surface markers, was used to evaluate 20 pediatric participants (30 feet) with planovalgus secondary to cerebral palsy prior to surgery. Three-dimensional kinematics of the tibia, hindfoot, forefoot, and hallux segments are reported and compared to an age-matched control set of typically-developing children. Most results were consistent with known characteristics of the deformity and showed decreased plantar flexion of the forefoot relative to hindfoot, increased forefoot abduction, and decreased ranges of motion during push-off in the planovalgus group. Interestingly, while forefoot characteristics were uniformly distributed in a common direction in the transverse plane, there was marked variability of forefoot and hindfoot coronal plane and hindfoot transverse plane positioning. The key finding of these data was the radiographic indexing of the MFM was able to show flat feet in cerebral palsy do not always demonstrate more hindfoot eversion than the typically-developing hindfoot. The coronal plane kinematics of the hindfoot show cases planovalgus feet with the hindfoot in inversion, eversion, and neutral. Along with other metrics, the MFM can be a valuable tool for monitoring kinematic deformity, facilitating clinical decision making, and providing a quantitative analysis of surgical effects on the planovalgus foot

    Automatic anatomical foot and ankle coordinate toolbox

    Get PDF
    Accurate analysis of bone position and orientation in foot and ankle studies relies on anatomical coordinate systems (ACS). Reliable ACSs are necessary for many biomechanical and clinical studies, especially those including weightbearing computed tomography and biplane fluoroscopy. Existing ACS approaches suffer from limitations such as manual input, oversimplifications, or non-physiological methods. To address these shortcomings, we introduce the Automatic Anatomical Foot and Ankle Coordinate Toolbox (AAFACT), a MATLAB-based toolbox that automates the calculation of ACSs for the major fourteen foot and ankle bones. In this manuscript, we present the development and evaluation of AAFACT, aiming to provide a standardized coordinate system toolbox for foot and ankle studies. The AAFACT was evaluated using a dataset of fifty-six models from seven pathological groups: asymptomatic, osteoarthritis, pilon fracture, progressive collapsing foot deformity, clubfoot, Charcot Marie Tooth, and cavovarus. Three analyses were conducted to assess the reliability of AAFACT. Firstly, ACSs were compared between automatically and manually segmented bone models to assess consistency. Secondly, ACSs were compared between individual bones and group mean bones to assess within-population precision. Lastly, ACSs were compared between the overall mean bone and group mean bones to assess the overall accuracy of anatomical representation. Statistical analyses, including statistical shape modeling, were performed to evaluate the reliability, accuracy, and precision of AAFACT. The comparison between automatically and manually segmented bone models showed consistency between the calculated ACSs. Additionally, the comparison between individual bones and group mean bones, as well as the comparison between the overall mean bone and group mean bones, revealed accurate and precise ACSs calculations. The AAFACT offers a practical and reliable solution for foot and ankle studies in clinical and engineering settings. It accommodates various foot and ankle pathologies while accounting for bone morphology and orientation. The automated calculation of ACSs eliminates the limitations associated with manual input and non-physiological methods. The evaluation results demonstrate the robustness and consistency of AAFACT, making it a valuable tool for researchers and clinicians. The standardized coordinate system provided by AAFACT enhances comparability between studies and facilitates advancements in foot and ankle research

    Effects of Spinal Fusion for Idiopathic Scoliosis on Lower Body Kinematics During Gait

    Get PDF
    Objectives The purpose of this study was to compare gait among patients with scoliosis undergoing posterior spinal fusion and instrumentation (PSFI) to typically developing subjects and determine if the location of the lowest instrumented vertebra impacted results. Summary of Background Data PSFI is the standard of care for correcting spine deformities, allowing the preservation of body equilibrium while maintaining as many mobile spinal segments as possible. The effect of surgery on joint motion distal to the spine must also be considered. Very few studies have addressed the effect of PSFI on activities such as walking and even fewer address how surgical choice of the lowest instrumented vertebra (LIV) influences possible motion reduction. Methods Individuals with scoliosis undergoing PSFI (n = 38) completed gait analysis preoperatively and at postoperative years 1 and 2 along with a control group (n = 24). Comparisons were made with the control group at each time point and between patients fused at L2 and above (L2+) versus L3 and below (L3–). Results The kinematic results of the AIS group showed some differences when compared to the Control Group, most notably decreased range of motion (ROM) in pelvic tilt and trunk lateral bending. When comparing the LIV groups, only minor differences were observed, and the results showed decreased coronal trunk and pelvis ROM at the one-year visit and decreased hip rotation ROM at the two-year visit in the L3– group. Conclusions Patients with AIS showed decreased ROM preoperatively with further decreases postoperatively. These changes remained relatively consistent following the two-year visit, indicating that most kinematic changes occurred in the first year following surgery. Limited functional differences between the two LIV groups may be due to the lack of full ROM used during normal gait, and future work could address tasks that use greater ROM

    Kinematic foot types in youth with pes planovalgus secondary to cerebral palsy

    Get PDF
    Background Kinematic variability of the foot and ankle segments exists during ambulation among individuals with pes planovalgus (PPV) secondary to cerebral palsy (CP). Clinicians have previously recognized such variability through classification schemes to identify subgroups of individuals, but have been unable to identify kinematic foot types. Research question The purpose of this work was to identify kinematic foot types among children with PPV secondary to CP using 3-dimensional multi-segment foot and ankle kinematics during gait as inputs for principal component analysis (PCA) and K-means cluster analysis. Methods In a single assessment session, multi-segment foot and ankle kinematics using the Milwaukee Foot Model (MFM) were collected in 31 children/adolescents with pes planovalgus (49 feet) and 16 typically developing (TD) children/adolescents (31 feet). PCA was used as a data reduction technique on 34 kinematic variables. K-means cluster analysis was performed on the identified principal components (PCs) and one-way analyses of variance (ANOVA) was done to determine the effect of subgroup membership on PC scores. Results The PCA reduced the kinematic variables to seven PCs which accounted for 91% of the total variance. Six distinct kinematic foot types were identified by the cluster analysis. The foot types showed unique kinematic characteristics in both the hindfoot and forefoot. Significance This study provides further evidence of kinematic variability in the foot and ankle during ambulation associated with pes planovalgus secondary to CP. The specific contributions of the hindfoot and forefoot would not have been detected using a single segment foot model. The identification of kinematic foot types with unique foot and ankle characteristics has the potential to improve treatment since patients within a foot type are likely to benefit from similar intervention(s)

    Impact of reduction of susceptibility to SARS-CoV-2 on epidemic dynamics in four early-seeded metropolitan regions

    Get PDF
    As we enter a chronic phase of the SARS-CoV-2 pandemic, with uncontrolled infection rates in many places, relative regional susceptibilities are a critical unknown for policy planning. Tests for SARS-CoV-2 infection or antibodies are indicative but unreliable measures of exposure. Here instead, for four highly-affected countries, we determine population susceptibilities by directly comparing country-wide observed epidemic dynamics data with that of their main metropolitan regions. We find significant susceptibility reductions in the metropolitan regions as a result of earlier seeding, with a relatively longer phase of exponential growth before the introduction of public health interventions. During the post-growth phase, the lower susceptibility of these regions contributed to the decline in cases, independent of intervention effects. Forward projections indicate that non-metropolitan regions will be more affected during recurrent epidemic waves compared with the initially heavier-hit metropolitan regions. Our findings have consequences for disease forecasts and resource utilisation

    3-Benzyl-5,7-dimeth­oxy­chroman-4-ol

    Get PDF
    In the crystal structure of the title compound, C18H20O4, O—H⋯O hydrogen bonds connect the mol­ecules in parallel layers along the b axis

    Processing blur of conflicting stimuli during the latency and onset of accommodation

    Get PDF
    The accommodative response (AR) to changes in dioptric accommodative stimulus (AS) during the latency period and onset of accommodation was investigated. Participants monocularly observed one period of a square wave in AS, with a 2-D baseline and mean, and amplitude 1 D or 2 D; the period of the square wave ranged from 0.10 s to 1.00 s; both increases and decreases were used for the first step in AS. At periods of 0.30 s and longer, accommodation was found to respond to both levels of the stimulus. Rapid retinal monitoring appeared to be taking place for such stimuli. The amplitudes of peaks in AR did not usually depend on whether a particular level of AS occurred first or second, but for 8/40 conditions, a significant difference was found, with a stronger response when the level of AS occurred second. Null or incorrect responses were also observed in many trials, possibly linked with the natural microfluctuations of accommodation. Minimum response times to the changes in AS were observed, which increased with decreasing period of the AS. The time interval between peaks in the AR decreased with decreasing period of the AS. The findings were consistent with a parallel processing model previously proposed for saccades, where input from a later change in stimulus may enter an element of the control system when that element has finished processing an earlier change. More than one change in stimulus may therefore be passing through the multi-element control system at a time

    Defective Peripheral Nerve Development Is Linked to Abnormal Architecture and Metabolic Activity of Adipose Tissue in Nscl-2 Mutant Mice

    Get PDF
    BACKGROUND: In mammals the interplay between the peripheral nervous system (PNS) and adipose tissue is widely unexplored. We have employed mice, which develop an adult onset of obesity due to the lack the neuronal specific transcription factor Nscl-2 to investigate the interplay between the nervous system and white adipose tissue (WAT). METHODOLOGY: Changes in the architecture and innervation of WAT were compared between wildtype, Nscl2-/-, ob/ob and Nscl2-/-//ob/ob mice using morphological methods, immunohistochemistry and flow cytometry. Metabolic alterations in mutant mice and in isolated cells were investigated under basal and stimulated conditions. PRINCIPAL FINDINGS: We found that Nscl-2 mutant mice show a massive reduction of innervation of white epididymal and paired subcutaneous inguinal fat tissue including sensory and autonomic nerves as demonstrated by peripherin and neurofilament staining. Reduction of innervation went along with defects in the formation of the microvasculature, accumulation of cells of the macrophage/preadipocyte lineage, a bimodal distribution of the size of fat cells, and metabolic defects of isolated adipocytes. Despite a relative insulin resistance of white adipose tissue and isolated Nscl-2 mutant adipocytes the serum level of insulin in Nscl-2 mutant mice was only slightly increased. CONCLUSIONS: We conclude that the reduction of the innervation and vascularization of WAT in Nscl-2 mutant mice leads to the increase of preadipocyte/macrophage-like cells, a bimodal distribution of the size of adipocytes in WAT and an altered metabolic activity of adipocytes
    corecore